Obrada fenolne otpadne vode katalitičkim oksidacijskim procesima / Ozren Wittine1, Karolina Maduna Valkaj1, Stanka Zrnčević1.
Sažetak

U radu je istražen utjecaj temperature na aktivnost i stabilnost Cu/13X katalizatora za obradu fenolnih otpadnih voda. Katalizator je pripremljen ionskom izmjenom komercijalnog 13X zeolita. Kako bi se povećala stabilnost katalizatora uzorci su podvrgnuti termičkoj obradi (kalciniranju) pri 523, 773 i 1023 K tijekom 5 sati. Karakterizacija katalizatora obuhvaćala je rendgensku difrakcijsku analizu na praškastom uzorku (XRD), skenirajuću elektronsku mikrografiju (SEM), infracrvenu spektroskopiju (FTIR), elementarnu analizu (AAS) te određivanje specifične površine standardnom BET metodom. Djelotvornost katalizatora praćena je preko konverzije fenola i ukupnog organskog ugljika (TOC) te skidanja bakra s nosača. Aktivnost i stabilnost katalizatora ispitana je u reakciji oksidacije fenola kisikom (CWAO, Catalytic Wet Air Oxidation), vodikovim peroksidom (CWPO, Catalytic Wet Peroxide Oxidation) te smjesom kisika i vodikovog peroksida (PP-CWAO, Peroxide Promoted Catalytic Wet Air Oxidation). Utvrđeno je da je djelotvornost PPCWAO procesa veća od djelotvornosti CWAO i CWPO procesa zbog sinergijskog djelovanja kisika i vodikovog peroksida na stupanj mineralizacije fenola. Postsintetska obrada katalizatora doprinosi stabilnosti katalizatora, budući je skidanje bakra s kalciniranog katalizatora manja nego s nekalciniranog.. The paper investigates temperature influence on the activity and stability of the Cu/13X catalyst for treatment of phenol wastewater. The catalyst is prepared by ion-exchange of commercial 13X zeolite. In order to increase the catalyst stability, the samples were subjected to thermal processing (calcination) at 523, 773 and 1023 K during 5 hours. The characterization of the catalyst included X-ray powder diffraction (XRD), Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy (FTIR), Atomic absorption spectroscopy (AAS) and determination of specific surface area by the standard BET method. The catalyst efficiency was monitored through phenol and total organic carbon (TOC) conversion and copper removal from the carrier. Activity and stability of the catalyst was tested in the reaction of phenol oxidation (CWAO, Catalytic Wet Air Oxidation), hydrogen peroxide (CWPO, Catalytic Wet Peroxide Oxidation) and mixture of oxygen and hydrogen peroxide (PP-CWAO, Peroxide Promoted Catalytic Wet Air Oxidation). It was determined that the efficiency of the PP-CWAO process is higher than the efficiency of the CWAO and CWPO processes due to synergic impact of oxygen and hydrogen peroxide on the level of phenol mineralization. Postsynthetic treatment of the catalyst contributes to catalyst stability, since the removal of copper from a calcined catalyst is lower than from a non-calcined catalyst.